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ABSTRACT

Studies of the low frequency stability of field
reversed ion rings in a dense uniform plasma background have
been carried out using & linearized 3d hybrid simulatijon
model. For a moderately thick ring with aspect ratio on the
order of 4:1, the azimuthal mode number { = 1 radial mode
(MHD precession) is observed to be stable, due to the
favoreble field gradient arising from image currents in the
outer wall. The { = 1 axial (Lilt) mode is unsteble for the
parameters chosen, as are the { = 2 radial and axial (kink)
modes, and the { = 3 radial mode. Al] other modes are
observed to be either siable or very weakly unstable;
numerical difficulties arising from the local instability of
individual orbits. in the equilibrium field make it difficult
to examine modes with small growth rates. The structures of
the various unstable modes range from near-rigid to quite
complicated in displacement pattern. Some preliminary
evidence for the existence of betairon resonance - driven
instablilities is noted.



1. INTRODUCTION

This paper describes investigeations of the low frequency stability
of field reversed ion rings, carried out using time—dependent computer
simulation methods. These rings are comprised of a large number of
energetic ions gyrating in an externally imposed magnetic field, and
bave sufficient densgity that the total (external + self) magnetic field
is reversed over a significant volume. Such configurations are of
interest because they contain a region of closed flux surfaces, and in
fact for the rings considered, closed field lines. The geometry of such
a syslem is depicted in fig. 1.

The field reversed ion ring concept is the basis for the jon ring
compressor fusion reactor proposal."' a development of the “Astron”
device;? related schemes are the field reversed mirror,* the spheromak,®
and the reversed field theta pinch.® In these last three, the bulk of
the ions do not execute axis—-encircling orbits, but rather are carried
around in azimuth by a drift motion. Furthermore, & hybrid ion ring -
spheromak in which a fraction of the azimuthal current is carried by
axis encircling ions has also been suggested’ as a means for improving
the spheromak’'s stability to tilt and other modes. The physical
configuration we consider is quite different. Here, we examine the
stability of very energetic rings in a pressureless background plasma
which supports no equilibrium current.

The stability of field-reversed rings and layers to high-frequency
modes has been studied effectively through theoretical analyses, because
these modes involve shoril wavelengths and simplified geometries preserve
the essential physics of the mode.® With respect to low-frequency
stability, resulte on precessional®-'%-!'!-'% and teering'®‘'* modes have
been available for some time. The stability of a plasme confined in the
closed field lines of a ring (assumed to be rigidly fixed) has also been
treated using the magnetohydrodynamic energy principle." The kink modes
of beams and rings have been examined,'® and an "energy principle” based
on the Vlasov equation has been developed to treat the general
low-frequency stability of exisymmetric field-reversed equilibria of
arbitrary ion gyroradius.!'?

These analyses have treated "bicycle-tire” (small inverse aspect
ratio) and long-layer equilibria, such epproximations being necessary to
render the analysis tractable. Some general implication of this work
are that "thick"” bicycle tires would be most stable to kink modes, in
the sense that stability criteria are satisfied when the parameters of a
ring with unit aspect ratio are inserted into the thin ring theory
which, however, cannot rigorously be applied in this regime. Similarly,
it has been found thet infinite layers are stable to precessional and
kink modes of sufficiently short axial wavelength.'’ Since a maximum
wavelength is imposed by finite layer length. the implication is that
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finite-length layers might be stable. However, the analysis does not
include the destabilizing effect of fieldline curvature at the layer
ends. Nonetheless, it is conjectured that a ring with aspect ratio of
order unity will represent the most stable configuretion; such an aspect
ratio is observed in the electron ring experiments.'®

Theoretical analyses have been unable to reach this regime, as no
simple analytical equilibria are known, and approximate treatments are
difficult since the inverse aspect ratio cannot be used as an expansion
parameter. However, Viasov equilibria for rings and mirror plasmas have
been found by computational methods.'®-%°:%*! Thus, one possible approach
to the low-frequency stability problem would be to apply a normal mode
analysis or an energy principle as in Lheoretical treatments, solving
the resulting equations numerically. In our present approach, we have
chosen instead to directly apply particle~in-cell and fluid simulation
techniques to the low-frequency stability problem.

The simulation program developed for this study is a linearized
three dimensional hybrid code called RINGHYBRID.®® This program models a
strong ion ring (represented by discrete simulalion superparticles) in a
plasme consisting of a cold, uniform background ion component and an
inertialess electron component of densily appropriate for local
quasineutrality (both modeled by fluid equations). To lowest order the
ring perticles are axisymmetric rings having r,z location and r,8,z
velocity coordinates. First order perturbations having azimuthal mode
number { are considered. so that each particle k is deformed by an
infinitesimal displacement (c,'F+¢,.O+¢.ti)exp(ilo). where ¢ is complex.
Fields and currents are represented by axisymmetric zero order parts,
plus first order parts varying as exp(if®8), defined on an Eulerian mesh
in the r—z plane. Since each simulation particle represents an infinite
set of real particles lyihg on a nonaxisymmetric ring, a considerable
economy of computalion relative to a nonlinear 3D code is possible.
Meaningful runs can be made using a few thousand particles; however, the
processing of each particle is much more complicated than in a nonliner
code.

Effects of "stochestic” single—particle orbits are observed in
these simulations; due to the local instability of particle
trajectories, neighboring orbits diverge exponentially with time. This
leads to & loss of left-right symmetry in the zero order motion;
however, in the linearized simulation the associated “growth” cen
someiimes be sufficiently rapid as to mask the collective modes which
are the true objects of study. The growth arises because ¢ measures the
separation between two trajectories (those of & point on the unperturbed
particle and a point on the deformed particle) which are, due to the
linearization, forever infinitesimelly close togther. This effect has
been described in detail elsewhere.®?



The stability properties of some field-reversed ion ring equilibria
which do not exhibit rapid orbil separation have been examined. One
moderately thick ion ring is studied in detail. This equilibrium is
steble to the MHD precession because a wall is present et finite radius;
kink mode behavior is observed to agree closely with predictions based
upon thin-ring theory. Some evidence for the possible existence of
betatron-resonance instabilities is noted.

The plan of this paper is as follows: in section Il the relevant
theoretical treatments of field reversed ion ring stability in a
background plasma are reviewed. In section 11l the simulation model,
and the effects of stochastic orbits upon its performance, are described
briefly. In sectjon IV the equilibrium of a strong ion ring is
described in detail, and the stability of this ring with respect to
perturbations with various values of { is discussed. The structures of
the unstable eigenmodes are also described. In section V this work is
summar ized, and conclusions drawn.

11. APPLICABLE THEORIES

The theory of field reversed particle ring stability has recently

been reviewed in considerable detail®*. Here we summarjze those

elements of the theory which will aid our understanding of the
simulation results.

A. Rigid perturbation model

The first works on the megnetohydrodynamic stability of Astron
configurations invoked the restrictive assumption that the particle
layer could be treated as rigid and immobile.'® The next development
was consideration of a beam segmented into cross—sections which executed
rigid transverse motions, with the shape of the cross—sections
preserved. This model, which is suiteble for kink modes, was applied by
Lee to straight beam systems®®, and by Lovelace to thin ion rings in a
background plasma with |v|<<|o‘||.'° An heuristic model which yields
similar results was also developed by Humphries.®® As in the RINGHYBRID
simulation model, in Lovelace's work the ring is assumed to be embedded
in a dense, pressureless background plasma, and there is no equilibrium
plasmea current nor charge separation. In addition, the aspect ratio R/a
of the ring is assumed to be large (“bicycle tire approximation”). The
rigid kink modes are the primary objecls of study, with poioidal mode
number m = + 1, toroidal number n (called { in our simulations) nonzero.



The developmenl of Lovelace’'s theory is as follows. First, the
plesma response to low-frequency kink-])ike beam perturbations is found,
and a basic energy equation is derived for beam—plasma perturbations.
The dynamics of the beam perturbation itself are then derived, and
related to the plasma perturbation.

For the linear beam case (most of the development), the coordinate
sysiem is (r,f,s), where s is the toroidal coordinate, r the poloidal
(minor) radius, end # the poloide]l angle. Perturbations have the
structure exp(imb+iks), where k = n/R. The background plasma (of
density n’) fills the region occupied by the beam (of density n.) out to
radius r, of the conducting vesse]l wall. In the bicycle tire limit only
the self-field is important, and B = B,(r)d.

The analysis uses Maxwell's equations and the MHD equations,
retaining the correction term qn 4E in the momentum equation since nb/n’
is small but not negligible.

Treatment of the beam dynamics is simplified by relating
displecements £ of the beam center-of-mass (not to be confused with the
g, used to describe the displacement of simuletion particle k in the
code) to the field perturbations; the beam current density perturbations
are in turn expressed in terms of ¢.

In the linearized particle equations of motion, the first order
electric field is neglected (essentially because n./n' << 1). AllEming
low frequency perturbations with |w| < v,/a and |ka| » a/R >> |v,/v |,
and & uniform beam velocity ;_ so that d/dt ~ ik;. (thus excluding
conventional precession and { = 0 modes from study)., the displacement ¢
is related to the (averaged over poloidal radius) first order field by:

e, = (qv,/mc)[(kv,)®- w}] '<éB >

(1)
£, = imz, {for the "helical” kink).
Here the effective betatron frequency is defined by:
u: = (an;./mbc') Ja3x 1} / fd3x I,
(2)

~ (Zﬂq;./mbc')dpr

(the subscript r denotes an average over poloidal radius). The first of
these forms is evaluated as o diagnostiic in RINGHYBRID. The resonance
factor in square brackets in eq. (1) is presumed to be limited by
spreads of v, (toroidal velocity) with r and by the thermal lpread'of
v_: thus, the "resonance region” (kv,)® ~ u"is_excluded from study.

A sufficient condition for stability is Ikv.l > ©, for all relevant
wavenumbers. This is equivalent to requiring that the wavelength
IA] < A, = an;_l/u'. Since k = 0 is excluded, A must be less than 2nR,
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and & sufficient condition for stlabilily is A, > 2nR, or equivalently

Ty > T, !here Lthe betatron peried T, = Bﬂ/b, and the gyration period

T, = 2nR/!.. This sufficient stability condition can also be expressed
as 4mn m vi/B = = g < 2/g*, where B, is the ratio of the directed beam
kinetic energy density to the energy densitly of the external magnetic
field, and g is a dimensionless factor of order unity given by

g = IRD..‘/;.I (v 1 for a weak ring), where 1, ., is the external-field
gyration frequency.

When the sufficient condition for stability is satiafied, the
self-field betatron wavelength of a beam particle is longer than the
maximum allowable wavelength (2nR), and the beam displacement in
response to a magnetic field perturbation 8B is opposite in direction to
the v X éB force on a single particle; when the sufficient condition is
not satisfied, the beam displacement is in the direction of the Lorentz
force, and 8B is enhanced. Lovelace notes that the condition for unity
field reversal on axis (field cancellation) is g, » (2/ng)(R/a)®; this
is "compatible” with the stability criterion when (R/a) < (n/g)'’/%,
which however violates the assumption of large aspect ratio.

Note that these stability criteria are independent of the wall
radius (except for the dependence in g) and plasma density, but that the
true stability threshold might have a more complicated dependence (these
criteria are sufficient bul not necessary for stability). Furthermore,
Lovelace computes an upper bound to the growth rate which is very
roughly proportional to (v‘/a)(;‘/Avt)'/'. where Av, is the spread in
beam velocity.

The second mode)l considered is one where Lhe toroidal nature of the
ring is taken into account.!® This case is of greater direct relevance
to the RINGHYBRID simulations. Toroidal effects break the m = 1
degeneracy of the kink mode; normal modes become "axial” and "radial",
and the above sufficient stability condition no longer implies stability
of the { = 1 radial (MHD precession) mode.

The axial and radial modes have differing parity under the
transformations (in RINGHYBRID's cylindrical coordinate system)
[r.6.(2-L/2)] - [r.8.(L/2-2)]. where L is the system length and the

zero—order state is mirror symmetric about z = L/2. For the radial
mode,

‘r.l -.+£r.l' £, = T &,
(3)
6B, , -~ -6B, ,. 6B, - +6B,
and the signs are reversed for the axial mode.
A sufficient stability criterion for the axial modes is
(o) > o + of, (4)



where the axial gxternsl-fjeld betatron frequency is given by
w, = (-n..‘)"'ﬂ << ], and n,,, is the usual external field index,
Next = (R/B,,,)0B, ,/8r; essentially this condition is Lthe same as that
for the straight beam mode].
For the radia! modes, the stabilitly condiltion is

(l0)® > o} + of,

s (5)

where the radial external-field betatron frequency is given by

w, = (1+q,,,)'/'n ~ ) unless the wall is quite close (static
image-current fields are included in %, . ,). For a significant departure
from & circular cross-section, the w,’s in eqs. (4) and (5) would be
replaced by Wy, and gy respectively. Since for a strong ring 01 < Wy
for { > 1 the stability criterion for this model does not differ greatly
from that for the straight beam model (it ie slightly harder to
satisfy). However, for { = 1 this sufficient condition for stability of
the "MHD precession"” becomes u: < -q,,,n'. which is essentially
impossible to satisfy for a strong ion ring. A more detailed
treatment!!-'? shows that this stability criterion is too restrictive,
and that stability oblains when the external field index (including
image effects) is positive. Thus., a ring in a uniform external field
should be stable to low-frequency, nonresonant, { = 1 radial modes if
there iz a radial wall at a finite distance.

B. Vlasov energy principle

A kinetic formalism for studying the low-frequency ltabiliiy of
field-reversed equilibria was developed by Sudan and Rosenbluth in 1876,
with a detailed presentation appearing in 1978'”7 (equations cited here
refer to the 1978 article). The contribution of the hot component (in
this case, the ion ring) to the perturbed current is described by the
Vlasov equation. The cold background plasma is described by fluid
equations, which are easily generalized to include plasma pressure and
currents. The basic idea underlying the treatment is similar to that of
the megnetohydrodynamic energy principle.®’

There are several forms in which the extended energy principle may

be expressed. but the following is most convenient for many
applications:

6C = K - wr + 6W_+ &W, = 0, (6)

where if 6C = 0 for any perturbation with Im(w) > O instability obtains.



For low enough real frequency, and neglecling particle resonance
contributions in 8W,, a sufficient condition for stebilitly is'?-%¢

o, + &W, - wr > 0.

(7)
Here
K= §fd%n m 1£|®
6%, = §/d%x16B1*/an
o%, = felnfaxd®vird-¢xBI® 07,/0H (8)

- fiefnfa xd3v(os,/0H) g dg°/dt
Y= -(ieb/Zc)fd’x n, £ -£¢xB

Here, ¢ is the electron displacement = ¢, f, = Jo(H-OP,) is & rigid
rotor equilibrium distribution, H is the (particle) Hamiltonian, 01 the
(constant) angular velocity of the system, P, the (particle) canonical
angular momentum, and the orbit integral along unperturbed trajectories
g (not to be confused with Lovelace’'s g, above) is given by

g =/ lodt’ £ .¥y'XB'. (9)

1f the background plasma has pressure and carries a current, JWP must be
modified appropriately, as in the conventional MHD energy principle.

For the straight-beam mode] of the bicycle-tire ring, g is
evaluated using the poloidal coordinate system (p.p.s8), where s = RO is
the toroidal coordinate. The Bennet pinch model is used:

B,(p) = V2(p/8)/(14p/a)*
n,(p) = [1+(p/2)%] " (10)
1,(p) = n e RO.

A rough estimate of g is obtained by using for all particles the orbits
appropriate to those near the beam axis (this would be exact for a
square beam profile). A different treaiment which directly invokes
orbital stochasticity yields the same result if betatron resonances are
neglected.®® For these orbits the megnetic field strength varies
linearly with p; letting B, = B(p=a), the orbit integral g becomes:

g = —(Byvy/e) Sl dt ¢, (17)p(L’). (11)

where ¢, = {,(p)exp[i(m¢+ks—wt)] and s = v t.
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For the (m = 1) kink mode (Lhe primary object of study in our
simulations), ¢, is set to (¢/a)exp[i(ptks—wt)]. where ¢ is a constant
(14B| is minimized with respect to ¢_,). In the dense plasma limit, o

is set to zero because n, << n,. Setting o = 0, ¢, ~ constant, the
result is'?

2
k. dB klvl
& = -O-Jd’x(pd—p) - °J¢’x¢'1,a,/.. (12)

g_ 2
u,—k Vo

r

As in Lovelace's theory. kv, = o> w, is stabilizing, end furthermore
the second term in the above equation is the more important of the two

by a factor vz/a'u:. Thus, the effective stability criterion agrees
with that of the earlier work:

in > ©y. (13)

with the same interpretation; a low frequency in the lab frame appears

as {0 in the beam frame, and particles do not respond coherently to
perturbations above w, in their own frame.

C. Betatron resonance instabilities

A study of betatron resonance instabilities in field-reversed ion
ring systems has been carried out by Finn and Suden,®® using the
generalized energy principle. The modes involved are hydromegnetic
modes of the baékground plasma, which are driven unstable by a resonant
coupling with the beam when w - {0 matches 1w, of the resonant ions.
Modes with phase velocity paralle]l to that of the ring (i.e. with
negative energy in the beam frame) are unstable, while modes with
opposite phase velocities are damped. The mechanism is similar to that
associated with cyclotron instability and damping. with the relevant
drift velocity in this case being due to the particle gyration and the
resonance being with the betatron motion.

In the most general case, when some or all orbits are "ergodic” or
"stochastic” on each (H,P,) surface in phase space. direct calculation
of orbit integrals along unperturbed trajectories is difficult or
impossible. However, by directly invoking this stochasticity, the beam
contribution to the energy principle is expressed in terms of the power
spectrum of orbital quantities, a positive definite function with peaks
at the axial and radial betatron frequencies. The existence of a
resonant (i.e. imaginary) part of the Hilbert transform of the power
spectrum implies instability. The results are applied to a rigid kink



mode of the background plesma using the bicycle-tire approximation. For
a fully reversed ring of moderate aspect ratio, i.e. when
(T/E)(R/a) ~ 1, where T is the ring temperature and E its directed
kinetic energy. hydromagnetically oteable kink modes are driven unstable
by the betatron resonances, and can grow on a hydromagnetic timescale
(y ~ v,/R). However, for a cold beam with a smaller degree of field
reversal, or with aspect ratio near unity, so that (T/F)(R/a) << 1, the
growth rate is exponentially smaller.

For a rigid rotor distribution function, an energy expression
gimilar to that of Lovelace (described above) bul trealing the beam
contribution by kinetic theory is derived. The frequency is given by

we 2z [(6W - im)XK]'/2, (14)

where 8W is the nonresonant energy term, K is the kinetic energy term,
and R is the resonant contribution; here,

oW = 6w, + (e®N?/2c%) S xlty|®faSvsy + S,

S «*in jd dHA H)f. ¥ Fle) : 15
~ emmtcl Pe (P.- Jo dpﬁﬁ'ln. (15)
etin P
R~ tot fdp.dHA(p..H)fop(— ).

A(p,,H) is the four dimensional phase space volume accessible to a
particle with energy H and canonical momentum Po- P(B) is the power
spectrum of betatron oscillations, and % denotes a principal value. For
small beam density, & is negligible. When 8W < 0, the mode is a
hydromagnetically unstable mode of the background plasma modified by the
presence of the beam, and R affects only the real part of the frequency
to lowest order. Vhen 6W > 0 and R * 0, resonant instability is present
and the degeneracy of ideal MHD, w = +(6W/K)Y/2, is split.
Alternatively,

jol® + 6W + o R/7 = 0, (16)

where @, = Re(w), 7 = Im(o). Thus for modes with W > 0 and

Jo = 0fo/0H < 0, orlﬁ/7 must be positive, so that mides with phase
velocity paralle]l to the beam velocity are unstable. Note that the
stability criterion is not obtained by minimizing the energy with
respect to ¢, and that since instability exists whenever R # 0 this
implies the absence of complete finite Larmor radius stabilization.
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While theories which neglect betatron resonances and similar kinetic
effecls predict finite Larmor radius stebilization, Tasso has pointed
out that finite Larmor radii cannot influence stabilily.®® The
resolution lies in the observation that the growthrates assocliated with
resonant instability can be exponentially small in comparison with MHD
growthrates. This point heas also been made by Seyler and Freidberg.?®®
Finally, nonlinear terms in the equation of betatron oscillatory motion
change the power spectrum P(f#) from a sum of delta functions at linear
combinations of the radial and axial betairon frequencies to a set of
broadened peaks; this effect is important only when the width of P(f) is
very large or the beam temperature very small.

As a specific example, Finn and Sudan treat the kink mode of the
field-reversed bicycle tire ion ring system in the straight beam limit;
the trial function is given by ¢ = (oﬁexp(ile—ivt). For low enough

energy Lhe orbits are purely harmonic, and assuming an exponential rigid
rotor distribution, ® is found to be:

gj 13"
R = An3/2(E/T)' /2R exp [-—T(l--) ]

T (17)

where {, = (R/a)(¢/n)'/%, end T/E ~ {/2n. Since W, o ~ (n/4)¢3BLR,

when { » {,, R is largest and of the same order of magnitude as &W

In the cold beam limit, the stability criterion a: < {%0? of
Lovelace!'®

is recovered. Ignoring resonances, &W is a strongly
stabilizing influence when w; < {*0°. When resonences sre included, the
analysis reveals that if (R/a)(T/E) ~ (¢{/2n)(R/a) << 1, resonant modes
with {* > {? have growth rates exponentially smaller than hydromagnetic
(compare &W,,..). Here, { is the field reversal on axis. However, for
stronger rings with (R/a)(T/E) ~ 1, all modes have growth rates typical
of hydromagnetic instability, with y ~ vA/a. In particular, without
betatron resonances the stability criterion is (R/a)®¢{/m < 1, but with
resonances included the condition for an exponentially small growth rate
is (R/a)%¢/n << 1—(T/E)'/®. For ¢ =1 (T/E = 1/2n). the criteria become
R/a < 1.77 and R/a << 1.37 respectively, and hence inclusion of the
betatron resonance instability mechanism makes the kink mode stability
criterion significantly harder to satisfy. A toroidal magnetic field is
found to stabilize these modes either completely or by reducing their
growih rates; however, such a toroidal field is not presently
incorporated into our simulation program.



111. HYBRID SIMULATION MODEL

The simulation model employed in these studies. and its
implementation into the RINGHYBRID code, have been described in detail
elsewhere.®? Here, we briefly describe the set of equatijons solved by
the program, the assumptions made, and the code’'s limitations.

RINGHYBRID uses particle-in-cell simulation techniques to advance a
set of finite-size "superparticle” clouds along their equilibrium
orbits. The equilibrium field has components B ,B, which are consistent
with the zero order azimutha! "beam” (energetic component) current J, ,
and charge density LI This self—consistency is arrived at by solving
Ampere's and Faraday‘'s laws (without displacement current) on the
computational mesh using J, , accumulated from the particles:

cVxUx(A,D) = (4nJ, ,-0%0A,/01)0, (18)

where ¢° is a constant; the effect of this term is to demp collective

oscillations from the system." Particles are injected over a number of
steps into a field which is initially that of a solenoid plus two
arbitrarily-located and —driven axisymmetric d.c. coils. The self-field
thus builds up gradually. Plasma electron relurn currents are
explicitly excluded at this point; this siage of the calculation is most
properly thought of as an artifice aimed at generating a suitable
equilibrium for the stability study, rather than as a detailed model of
ring buildup in an actual experiment. The formation of equilibria by
injection of simulation particles has been described in greater detail
elsewhere .3

In addition to the hot-ion component, a cold, uniform background of
jons (i) and a complement of cold electrons (e), of density such that
charge neutrality obtsins, are described by fluid equations. While
these latter components have no zero order motion, their first-order
response is of critical importance. Collisions between background
electrons and ions are modeled by a scalar collision frequency v_,.
Electron inertia and the displacement current are neglected;
quasineutrality and low frequencies justify neglect of the longitudinal
displacement current (as well as the transverse component, already
neglected in the Darwin approximation). Since we do not solve Poisson’s
equation, no conflict with the charge continuity equation arises.

A field or current quantity G is represented by:

G(r.8,z.t) = G%°(r.z.t) + 8Gexp(ile), (19)

where @ is defined relative to the +x axis. Among the equilibrium

quantities, only BY,Bj., and nJ, are used in the simulations, though I},

is needed to obtain the equilibrium. All first order fields and
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currenls are employed, and so SE,8B, and 8J) require 18 arrays (since the
perturbations are complex).

Particles are circular ring of finite cross-section, to zero order.
To first order they are noncirculer, each point p on the zero order
particle being displaced to a point p° on the perturbed particle:

p' =p + g exp(ily), (20)
Here ¢ is defined relative to a "reference point” r on the particle;
moves with the zero order motion in r, #, and 2z and is instantaneously
located at an angle a with respect to the +x axis, so thet 6 = a + ¢.
We need only follow the motion at the perturbed reference point r*,
since £ contains the amplitude and phase information for displacements
at all p'. Note that ¢, may be nonzero, indicaling e periodic bunching
of the poinis comprising one simulation superparticle.

The first order simulation begins by advancing the "beam" particles
along their equilibrium orbits, yielding r(t), r(t), and B(r(t)):
spatial derivatives of the last are obtained using using the derivatives

of the zero order particle—mesh interpolation function. For each
particle,

€ = (a/m){8E + Px[8B+(£.V)B] + £xB}. (21)

Also using the particle-mesh interpolant and its derivatives,
expressions for the components of 8J are evaluated for each particle in
turn; these are too complicated to reproduce here.

The plasma model equations are:

0 = —n,e(SE + 8v,xB/c) - n,m,v,,(8v,Bv,)

n,m,88v, /3t = n,Ze(SE + &v,xB/c) - n m v, , (8v, -dv )
n,=2n, + n, (n, = constant) (22)
cVxgB = 4n(8J, + &), + 8J,)

cVx8E = -83B/8t .

A dimensionless resistivity n = ln.v“/Zn‘ez is incorporated; however, we
have not studied its effect upon ring stability. This set of equations,
with 8], treated as a source lerm, is solved using centered differencing
in time. Then, a corrector iteration is performed for the purpose of
obtaining an improved &J,.

A generated equilibrium was allowed to “settle down” with the
resistive relaxation turned on for (typically) 850 timesteps, et which
time the equilibrium fields would be “frozen”. At timestep 1000, the
timestep counter would be reset to zero, a perturbation (for example,
with { = 1) excited and the linearized simulation performed until the
desired number of timesteps had been completed. Since a copy of the
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state of the system would normally be saved immediately before the
timestep counter was set Lo zero, this latter perturbation could be set
by the user to have any value of {, any symmelry (i.c. axial mode
symmetry, radial mode symmetry, random excitation, etlc.), and any value
of the background plasma densily. since the last does not come into the
equilibrium itself when the background is assumed pressureless, as in
RINGHYBRID. Thus, a “family” of runs would be made starting from the
same equilibrium state.

Our initial efforis in the study of field reversed jon rings using
the RINGHYBRID code were frustrated by the sppearance of rapid
single-particle instability, arising from the exponential separation of
the perturbed and unperturbed orbits with time.*® During the course of
experimentation with the code, we discovered one particular
field-reversed equilibrium (a moderately thick ring) for which the rate
of single—particle growth was sufficiently low that collective behavior
was pot unduly mesked. That such configurations exist might be
conjectured on the basis of work by others,®* which showed a strong
mode | ~dependence of the ion ring’'s stochastic properties. In the
following section we describe this equilibrium, and our simulation
results regarding its low—frequency stability.

Addition of spatial filtering did not affect results, nor did use
of metallic endwal!l boundary conditions, in the KR-series of runs.

1V. STABILITY OF A MODERATELY THICK ION RING

The runs to be described model a moderately thick ring which did
not suffer unduly from single—particle instebilities. The equilibrium
(run “KR") was formed by the injection of 2400 superperticles, each with
charge W = .04, into a simulation region represented on a 48 cell (r) by
48 cell (z) grid. The actual region of injection was the interior of an
oval, contained within r = 10 and r = 20, z = 18 and z = 30. Parameters
were such that the (external field) ion cyclotron period was 40
timesteps, i.e. w_,At = .157. The equilibrium field was frozen at
timestep 950, and the perturbation initiated at timestep 1000. A number
of hybrid-model simulations were carried out using verious values of {
and two values of the background density p,. The equilibrium
configuration is illustrated in fig. 2(e—d), which shows (respectively)
contours of J:, in the r-z plane, field lines (equally spaced contours
of V§, where y = rA,), particle locations, and contours of the mean
angular velocity at each point in space. It is evident from the figure
that the ring is moderately thick, fully field-reversed, and well
removed from the radial vessel wall. More detailed diagnostics show
that the ring contains only confined particles, and that it is not

rotating "rigidly” — in fact the meen angular velocity varies by about
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60% over the ring, being greatest at the regions of smell radius. The
orbit of a typical particle in this equilibrium is depicted in fig. 3;
in a). the view is down the z~axis, while in b), Lhe trajectory is shown
in (r.z) spece.

Parameiers for this equilibrium are as follows. The wall lies st
r, = 48(cells), and the system is periodic in z with a periodicity
length L = 48. This is long enough that we expect little interaction
between the "neighboring rings” of the nearby periods. Growth times are
of order of magnitude a/v,, while Alfven transit times to the next
period are larger by a factor L/a. The major radius of Lhe ring was
R= 18, with r.m.s. halfwidths a, = 2.9, a, = 3.8 (for purposes of the
stability calculation, these are underestimates, and values taken from
the separation between peaks of IJ;,I when & perturbation is initialized
are ~4.5 and ~5.0 respectively, leading to an aspect ratio of order
4:1). Although the external-field ion cyclotron period was v, = 40
steps, due to the self-field effeci the mean gyration period T, Wes 70
steps (DAt = .08). Noting that the ratio of thermal to directed energy
T/E ~ ¢/2n ~ 0.27, we estimate |v_|/|v,| » 1/2; this is confirmed by
observing typical particle orbits which have |v | ~ 1.5, Ilv,| ~ 0.8 near
the center of the ring. Also, ¢, ~ 1.7, and {, ,, ~ 1.35. An
effective self-field betatron frequency was calculated, as deacribed in
the above dicussion of Lovelace’'s theory, yielding an axial betatiron
frequency of Woy ™ .2. Folding in the effect of the gyratory motion,
the radial betatron frequency is found to be approximately w, =~ .26.
These are only crude estimates, and in reality there are considerable
spreads (of perhaps 20%) to these frequencies; by looking al a few
representative particle orbits these numbers were checked and found to
be reasonable estimates.

Thus, on the basis of the snalytic theories of Lovelace and of
Sudan and Rosenbluth described above, we have the sufficient condition
for stability of axial kink modes IN > ©,, and hence would expect the
{ =1 and 2 axial kink modes to (probably) be unstable, while the { » 3
modes would be stable. For the radial modes, we have (for § > 1)

o » v, sufficient for stability, and thus expect ! = 2,3 radial modes
to be unstable, with { » 4 modes stable. Furthermore, for the radial
{ = 1 MHD precession, we expect stability since there is no external
field gradient and there is a stabilizing image current-induced
equilibrium field gradient. As shown by Finn and Sudan (discussed
above), the effects of particle betaton resonances ({f ~ u’) would be
expected to alter these predictions somewhat. As will be seen, our
simuletions show the gross stability properties of the system to be in
close agreemenil with theoretical predictions neglecling the resonant
effects, and also show much weaker instability in some cases which may
possibly be attributed to betatron resonance instability.
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As an aside, note that simulation variables are related to a
specific sel of physical (CGS,MKS) variables only when Ar and At are
specified in physical units (in code units they are both unity).?® Thus,
there is a two—parameter famjly of physical situations associated with
each simulation run. To give a specific example, if for the present
series of runs we associate Ar -~ 0.5cm., At - 1.0ns., then the physical
system has: R = 9cm., r_ = 24cm., B,,, = 16.4kG., v, = 7.2X10%nm/s.,
n, = 1.4X10'%cm™?, | = 320kA., J = 1.6X10°A/cm® (typical), and the ring
is made up of 1.6X10'" protons, each with a (typical) energy of 0.5MeV.
Ol course, by varying the assumptions concerning Ar and Al, a ring with
(sey) R = 36cm. would be represented by the same simulation run. To
summar jze, any number of physical scenarios are represenied by one run;
it is the sel of dimensionless parametlers (such as ¢_, .. Caxia® 8,./R,
etc.) which are of fundamental importance.

For most of the runs in this series, the background plasma density
(in dimensionless units) was set to p, = 4. This corresponds to a
density ratio p (mex)/p, = .018, and a velocity ratio v,/v, = 18.5.

The code was allowed to run without calculating first order
currents and fields, so that the g, should have a chance to grow due to
the presence of single—particle instebility. Figure 4 shows the
components of [<g>] as functions o! Lime between steps 2000 and 4000;
weak “stochastic” growth is evident, with y/lw_,| ~ .015. Thus, we are

unable to diagnose weak collective instability with growth rates less
than ebout .015.

{ = 1 Results

The first hybrid-model run in the series was “KRAA"; for this run
en { = } perturbation having both radial and axial components was
initiated at "timestep zero.” This initialization is depicted in
fig. 5. part a). The top half of the figure shows eight “tracer”
particles at timestep zero, viewing the system along the z axis. The
initial "rigid” off-center displacement of the ring is evident. The
left lower section of the figure contains the same information, but the
ring has been "unwrapped”, so that & ranges from O to 360° along the
ordinate and r renges from 0 to 48 along the abscissa. Finally, the
right Jower section shows an unwrapped ring viewed looking down the
x—axis; the axial perturbation (tilt) is evident here — it has been ‘
initialized 90° oul of phase with the radial excitation. Note that the
(strictly infinitesimal) perturbation was initialized with unit
magnitude in the code - since the system is linearized the numerical
magnitude of the initial perturbation is irrelevant. For the creation
of these “snapshots” the g, 's were muliiplied by a suitable constant to
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render them visible, before adding them to the zero order location of
each point on the tracer particle k.

Figure 5, part b) shows Lhe same quantities at timestep 1000 (the
end of the run). Because (as will be seen) only the axial mode is
unstable, only the lower-right plot in the ligufe shows coherent
structure. Most of the eight tracer particles are displaced
approximately in phase with each other in the axial direction. Here,
the ¢, s have been divided by 6X10%, as the axiel mode has grown by
almost three decades.

This growth can be seen more clearly in fig. 6, which shows the
components of |<z>| as functions of time, between timesteps O and 1000.
It is evident that the axial kink mode is unstable, with a growth rate
of y' = 7/|0,.| = .053. The mode is clearly hydrodynamic in character,
as 7..,",/51el -~ v./aoe‘ ~ 0.1 is a reasonable order—~of-magnitude estimate
of the growth rate. The mean radial displacement (and the mean
azimuthal displacement, to which it is coupled by the geomeiry of the
system) does not grow with time. That is, this ring is stable to the
{ = 1 radial mode ("MHD precession”). Since no external field gradient
was applied, the stability of this mode is to be expected.

Examination of the phase behavior of the mean ¢, fig. 7, confirms
these findings. The quantities <y > and <¢,> show no single clear
structure (the structure in <¢,> can be termed & "bump on the ring”
effect, that is, a stable perturbation traveling with the layer, since
its phase advances at approximately the gyration frequency). In
contrast, <¢ > shows a slow, steady advancing of phase (after the
unstable mode has come up out of the noise), with a real frequency
w' =w/le,, | = .0076. Clearly this is much smaller than unity, and so
assumptions of a low-frequency mode are well justified. Also note that
the growthrate y ~ 0.008 is greater than the inverse of the Alfven
transit time to the walls, v,/L < 0.003, so that endwall effects can be
expected to be unimportant, and the mode is "local”, in this sense.

The structure of this unstable mode has been diagnosed in
considerable detail. In fig. 8 are depicted the mean first order
displacements of the ring particles as a function of r-z position, at
the end of the run. These were obtained by summing the g, of all
particles in each grid cell (using the particle-mesh interpolatory
spline). then dividing by the number of particles in the cell. In the
two boxes at the left of the figure the two—dimensional vector
(<c,>.<t.>) is drawn as an arrow with its center over that of the
corresponding grid cell and its length proportional to that of ¢ .
The upper figure depicts the displacement at @ = 0°, while the lower
figure depicts that at 90°/{. Examination of the latter reveals the
mode to be nearly a rigid “tilt” about a point somewhere between the
edge of the ring and the z axis. The orientation of this tilt, with a
maximum positive displacement at # = 90°, is also evident in fig. 7,

—-17-



which shows the “mean phase” <p > at the end of the run to be roughly
90°. The two boxes al the right of fig. 8 depict sonally averaged
azimuthal displacements <¢,>, with an up-arrow indicating a positive
displacement. These arrows are drawn to the same scale as those of the
corresponding frame on the left. At 90° there is almost no azimulhal
displecement, but at 0° the principal displacement is azimuthal. Note
the left-right antisymmetry.

Another diagnostic of the mode structure is presented in fig. 9,
wherein "slices” through the middle of the ring were taken. On the
left, the dependence of ¢ upon r at z = z2_, . is shown. The uppermosti
frame depicts <¢ > ot 8 = 0° (s0lid) and 80° (dashed). The middle and
lower fremes similarly show <£,> and <z _>. Note that the lowest curve
on the left embodies the nearly-rigid “tLilt” structure. On the right,
<g> as a function of z at r = 17.5 (epproximately the mean radius of the
particles) is shown, agein with r,6.z components from top to bottom.

Similar diagnostics for the first order beam current appear as
fig. 10 and fig. 11. They reveal it to have a large positive component
at the right of the ring, and a similar but negative component on the
left. A smaller positive J:. at 8 = 0° can also be noted.

Figure 12 depicts the first-order megnetic field at the end of the
run. Note how field lines encircle the peaks of positive and negative
azimutha]l beam current (the arrows in the lower figures would be three
times as long as those of the upper figures, were they drawn to the same
scale). Similar diagnostics for the first order electric field reveal
its principal component to be azimuthal, left-right antisymmetric, and
of roughly equal magnitude but opposite sign at & = 0° and 90°.

The plasma ion current is smaller in magnitude than the beam
current; its spatial pattern is entirely different. as seen in fig. 13.
Finally, fig. 14 depicts the total current obtained as the curl of B'.

Its dominant azimuthel component is smaller than, but similar in pattern
to, that of the beam current.

{ = 2 Results

The second run to be considered is "KRBA”, which was given an { = 2
excitation at timestep zero. The evolution of the components of the
mean amplitude j<e>| is shown in fig. 15. As enticipated, both axial
and radial { = 2 modes are unstable. Note in the figure that the radial
and azimuthal components grow at the same rate (as they must),
7y, = .091, while the axial component |<¢ >| grows at a slightly faster
rate, y, = .088 (the difference can be seen if e parallel-line ruler is

applied to the figure). Note that these growth rates are higher then
that of the { = 1 axial mode.
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That the redial! and axisl modes have different frequencies is more
clearly evident in fig. 16, which shows the temporal evolution of the
phases of the mean displacement componenis. Radial and azimuthal phases
advance at a very low frequency w; = .024, while Lhe axial phase

advances at @, = .133. Note that these frequencies were calculated from

the period associated with motion of the displacemsent through 180°,
since in the laboratory frame of reference an { = 2 displacement would
appear identical under a rotation through 180°. The period for each
point of the wave paitern to move through e full circle would be twice
as long, so the apparent angular velocity of the mode is half the quoted
frequency.

The same run with only an initial radial perturbation was mede, for
purposes of diagnosing the mode structure; il was called NNHA.

Snapshots of the “tracer” particles at a time halfway through the run,
and at the end of the run, are depicted in fig. 17. Note that the
perturbations to the particle shapes are drawn to different scales at
the two times. The points comprising the simulation particles at small
radius exhibit strong azimuthal bunching. Mean displacements <g> at the
end of the run are depicted in fig. 1B. The upper frames are at 8§ = 0°;
the lower are at 45°, and their arrows would be half as big as drewn
were they to scale. From fig. 18 we see an expected peak displacement
at 8 = B0° (and also at -10°, 170°, and 260°). Note how nearly rigid
this mode is as a function of r and z. The first order magnetic field
pettern for this run is shown in fig. 19; agein, field lines encircle
the beam current.

The seme run with only an initial axial perturbation was also made
(NNIA). Snapshots of the “tracers” at the end of the run are shown in
fig. 20. The upper right of the figure is a three-dimensional
representation of the perturbed ring, while the lower right shows
"slices” at various values of 8. Mean displacemenis at the end of the
run are shown in figs. 21.22; no rigid structure is discernable. The
peeak mean axial displacement, from fig. 16, is at about & = 120° and
300°, with negative peaks at 30° end 210°. Thus, neither snapshot
depicts the mode structure at the # of maximum displacement, and so the

mode may in fact have a more rigid structure than that suggested by the
figures.

{ = 3 Results

Two runs with initial { = 3 perturbations were carried out; these
were KRCA and KRIA. In the former, both radial and axial components
were excited, while in the latter only the axial component was excited.
The reason the latter run was made is that in the former run, the
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rapidly growing unstable radial mode "corrupted” the stable axlial mode
after about 300 timesteps, and the axial mode began growing with Lhe
same growth rate as the rediel mode. This is due Lo a weak (numerically
induced) coupling of the radial and axial! modes, which arises from small
left-right assymmetries in the system (due to weakly stochastic orbits,
for exemple). Since it was desirable to verify the stability of the

{ = 3 axial mode over a longer period of time, the latter run (KRIA) was
made, and results from this run are shown here. The growth of the axia)
mode in KRCA was clearly nonphysical, as it was locked in phase to that
of the radial mode, and disappeared when the radial mode was not
excited.

In fig. 23 the components of |<¢>| are shown as functions of time.
The radial mode, which was not initially excited, grows up out of noise
anyhow (due to the weak assymmetry-induced coupling with the axial
mode). Its growth rate is the largest of any mode for this equilibrium,
with 7' = .12. The mean axial displacement |<¢ >| behaves [dentically
to that observed in KRCA for 300 timesteps. However, in contrast to
that run it shows stability (or at worst, very slow growth) out to
approximately timestep B00, when it too appears to be "corrupted” by the
many—decades-larger unstable radial mode, in much the same wey as it was
in KRCA at an earlier time. On the basis of the time-history of |<¢ >]|-
between steps 0 eand 800, an upper limit to the growth rate of the { = 3
axial mode can be established at 7' « .02. The axial mode may in fact
be stable, and the weak growth an artifact of the single-particle growth
mechanism; or it may be very weakly unstable. A possible mechanism for
instability is the betatron resonance effect of Finn and Sudan
(described above). Since 30 ~ .24 and some of the u'.'s can be expected
to fall near this value, a betatron resonance instability is at least
plausible in this case.

The mean pheses of the [ = 3 run KRIA are shown in fig. 24 as
functions of time. The real frequency of the radial mode is o' = .185.
The axial mode contains a real frequency component at @' = .25; that
this component is visible at all is a suggestion that a weak instability
(quite different in character from the "classical” kink mode instability
in the radial direction) is present. Numerical coupling to the radial
mode can be ruled out since the frequencies of the radial and axial
modes differ. Finally, we note that the phase of the axial mode
advances in the forward (+8) direction, as necessary for a
betatron-resonance instability, and that Finn and Sudan’'s ‘o' the value
of | for which the resonant term R is maximal, is of order 3 for this
equilibrium.

Mean £'s as functions of r and z are shown in fig. 25. The peak
positive radial displacement occurs at # = 20° (and also 140° and 260°),

while the plots are at 0° and 30°. Note the concentration of <z _> near
z = z-ld'
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{ = 4 Results

Initial radial and axial perturbations were applied to the ring in
run KREA. In contrast with the run described above, no component of
l<e>| in fig. 26 shows clear exponential growth. Instead, the radial
and azimuthal components show "ragged” growth at 9' = .037. (Recall
that, for { = 1,2,3, as { was increased the growth rate of the radial
mode also increased, and growth was purely exponential.) The axial
component does not show such a repid increase in amplitude, and may be
stable; an upper limit to its growth rate is y° ¢« .018. Mean phases for
this run are shown in fig. 27. It is hard to determine eny real
frequencies here, but the radial displacement appears to have a
component at @' = .3

In an attempt to determine how much of this growth could be
directly attributed to the single-particle stochasiic growth mechanism,
another run, KRFA, was made. In this run, the first-order current
accumulation and fieldsolving were deactivated, so that E! = B! = 0, and
the separation of neighboring orbits in the equilibrium field would be
the only possible growth mechanism. Figure 28 shows the components of
{<e>| as functions of time for this ring (phases, not shown, have no
apparent structure). The radial and axial growth rates due to the
single-particle mechanism appear to be between .015 and .018. In fact,
the axial displacement |<c,>| looks much the seme as it did in the full
hybrid model run KREA. However, the radial and azimuthal displacements
in KREA eppear to grow somewhat more rapidly than those in KRFA; this
suggests that there may in fact be a weak instability of the { =4
radial mode. Again, a possible explanation for this is that 40) ~ .32
mey not be greater than all the “gy '8, since there is a considerable
spread to these quantities and a nominal value for o, is .26. However,
this growth may possibly also be nonphysical. and due to the
single—particle mechanism. The average |<e  ,>| may be larger when
collective effects are included merely because a weak phase—correlation
of other particles with the displacements of the most-unstable particles
has been introduced. The lack of structure to the phases further
suggests the absence of a true unstable collective mode.

{ = 5 Results

Run KRGA was an { = 5 study of the same equilibrium, involving
initial axial and redial excitations. Time histories of the components
of |<g>} for this run are shown in fig. 20. An upper limit to the
radial mode growth rate is y° € .022, while for the axial mode an upper
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limit is ¥y ¢ .020. Both of Lhese growth rates are roughly consistent
with the stochastic growth mechanism (with the average ¢'s being
modified somewhat by Interparticle couplings). This is confirmed by the
pheses shown in fig. 30, which show no evident structure, as expected
for single-particle type growth.

{ = 1, Denser Plasma Results

Run KRDA, and its continuation KRDB, model a system wherein the
background plasma density was made larger by a factor of four than it
was in the above runs; p (max)/p, = .0044. Figure 31 shows the time
histories of the components of |[<¢>| between timesteps O and 2000 (note
that this run was twice as long as the others so that the slower growth
could be measured). Mean phases are shown in fig. 32. As in the
less—dense-background run KRAA, the radisl mode (involving <¢ > and
<¢,>) is observed to be stable — note that the mean phases of these
components show no structure. Furthermore, the axial mode is again
unstable, with y' = 028 and w' = .002. The growih rate is
approximately half that bbserved in the run where p, was 1/4 as large,
while the real frequency is about 1/3 as large. Such e scaling of the
growth rate with the inverse square root of the background density
(i.e. with the Alfven speed in the background plasma) is suggested by
theory as described in section I11A.'®

A summary of the results for the runs described so far (KR-series)
is presented in Table 1.

Runs With Thinner Rings

For a series of thinner ion rings, we have observed large growth
rates and unstable modes up through { = 7. A summary of the results for
this series of runs (KP-series) is presented in Table Il. In this
series, as well as in some other thin ring runs, there is an instabilliy
of the { = 1 azimuthal and redial motion which corresponds to a
*bunching” of the ring. This latter instability may be an artifact of
the small number of grid cells over which particles move in the thin
ring runs, or it may be a physical instability similar in character to
“negative mass” instability. '
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V. SUMMARY AND CONCLUSIONS

We have found one particular equilibrium for a moderately thick,
field reversed fon ring with aspect ratio of order 4:1 for which
single~particle instability was not excessively rapid. For this ring,
we have observed non-resonant kink mode behavior in good agreement with
predictions based on the thin ring theories of Lovelace, and of Sudan
and Rosenbluth. In addition, we observe additional instability which
may correspond to the betatron resonance mechanism of Finn and Sudan,
although beceuse of the masking effect of single—particle modes it is
difficult to make a conclusive identification.

Since the most dangerous modes of the moderately thick ion ring
appear to be the nonresonant kink modes, some means of stabiljzing these
modes must be found. Studies by Finn suggest that a toroidal field
would suffice to stebilize these instabilities; its sirength might be
well below the Kruskal-Shafranov value®! (the resonant kink modes might
also be stabilized by a toroidal field®®). Stability of the { = 1
radial mode (MHD precession) in & uniform external field does not appear
to be a problem if there is a wall at finite distance, since image
currents in the wall provide a favorable field gradient. However, if
the ring is contained within an extiernal mirror field with a
corresponding negative radial field gradient, the wall may have to be
quite close to provide stabilization. Alternately, a favorable gradient
might be provided by an external queadrupole field, but the introduction
of zero-order nonaxisymmetry may introduce a host of other
instabilities, such as single-particle resonance instabilities.3%-33 The
higher azimuthal mode number nonresonant kink modes are stabilized by a
larger inverse aspect ratio, which has the main effect of lowering the
betatron frequency by making the effective potential well more shallow.
There may well exist equilibria which are stable to these gross modes.
Finally, we expect that low-frequency instabilities such as the ones
herein described might efectively be stabilized by feedback techniques.
Nonlinear studies must be performed to determine which modes are Lruly
dangerous and which saturate in a benign manner (such as by thickening
the ring slightly).
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TABLE 1. Summary of resulls for moderately thick ion ring (series KR).
Results for modes with growth rates less than about .04 are uncertain

due to "single—pearticle” instability. while all others should be
unaffected since the collective mode is dominant.

Run Mode 7;n|lnl 7;xl.l vl"l‘lll u;llll
KRAA l =1 ~0 .053 - .0076
KRBA l=2 .091 .098 .024 .133

KRCA, 1A l=3 .12 ~0 .165 -
KREA i =a €.037 €.018 - -
KRFA [ = 4, .015 .018 - -

5.p.
KRGA il =5 €.022 €.020 - -
KRDA,B (=1, ~0 .028 - .002
p =186
("s.p.” : single—particle run, E! = B! = 0)
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TABLE 1l. Summary of results for thinner ion ring (series KP).

Run Mode 7;l‘|ll 7;lll| “'l".llnl u;llll
KPAA 1 €.031 .083(s.m.) .24 -
KPBA 2 .083 .095 .01 .02
KPCA 3 .205 .239 .053 .084
KPDA 4 .347 .381 .184 .229
KPGA 7 .489 .4B4(end) .792 1.0(end)

.337(beg) .78(beg)
("s.m.” : single particle mode)
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FIGURE CAPTIONS

Fig. 1. Depiction of field reversed ion ring geometry.
Fig. 2. Clockwise from upper left: contours of J:, in r - z plane,
fieldlines, contours of mean angular velocity, particle locations, for

equilibrium run KR.

Fig. 3. Typical particle orbit: a) view down axis; b) path in r-z
space.

Fig. 4. Amplitudes of components of mean displacement versus time for
run KR, with E! = B! = 0. The slow exponential growth reflects the
separation of intrinsically unstable orbits in the equilibrium field.

Fig. 5. Snapshots of tracer particles for run KRAA. (a) Timestep O.
(b) Timestep 1000.

Fig. 6. Mean amplitudes of radial, azimuthal, and axial components of
particle displacements versus time for run KRAA ({ = 1).

Fig. 7. Mean phases of radial, azimuthal, and axial components of
particle displacements versus time for run KRAA ({ = 1).

Fig. 8. Mean displacements of ring particles at end of { = 1 run versus
r-z position (see text).

Fig. 9. Mean displacements of ring particles for { = 1 versus r and
versus z (see text).

Fig. 10. First order beam current versus r-z position for { = 1.

Fig. 11. First order beam current versus r and versus z for i =1,
Fig. 12. First order magnetic field versus r-z position lor_l = 1.
_Fig. 13. First order plasma ion current versus r-z Position for L = 1.

Fig. 14. First order total current versus r-z position for | = 1.
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Fig- 15. Mean amplitudes versus time for run KRBA ({ = 2).
Fig. 16. Mean phases versus time for run KRBA ({ = 2).'

Fig. 17. Snapshots of tracer particles for { = 2 “radial mode"” run at:
a) a time halfway through the run; b) the end of the run.

Fig. 18. Mean displacements of ring particles at end of { = 2 "radial
mode” run versus r—z position.

Fig. 19. First order magnetic field versus r-z position for { = 2
“"radial mode” .run.

Fig. 20. Snapshot of tracer particles for { = 2 "axial mode" run, at the
end of the run (see text).

Fig. 21. Mean displacements of ring particles at end of { = 2 "axial
mode” run versus r-z position.

Fig. 22. Mean displacements of ring particles at end of { = 2 "axial
mode” run versus r and versus z.

Fig. 23. Mean amplitudes versus time for run KRIA ({ = 3).
Fig. 24. Mean phases versus time for run KRIA ({ = 3).

Fig. 25. Mean displacements of ring particles at end of { = 3 run versus
r-z position.

Fig. 26. Mean amplitudes versus time for run KREA ({ = 4).
Fig. 27. Mean phases versus time for run KREA ({ = 4).

Fig. 28. Mean amplitudes versus time for run KRFA ({ = 4, tirst order

Eulerian fields set to zero to illustrate orbit separation in the
equilibrium field).

Fig. 29. Mean amplitudes versus time for run KRGA ({ = 5).
Fig. 30. Meen phases versus time for run KRGA ({ =5).

Fig. 31. Mean amplitudes versus time for run KRDA/B ({ = 1, denser
plasme background).

Fig. 32. Mean phases versus time for run KRDA/B ({ = 1, denser plasma
background).
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Figure 1.

Depiction of field reversed ion ring geometry.
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Flgure 2.

Clockwise from upper left: contours of J:, Inr -2 plone, tieldlines,
contours of mean ongulor veloclty, porticle locotions, for equilibrium
run KR.
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Fligure 3.

Tyolcol nartizle orhif: .)L',“' down oxis; b) path In r-z space.
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Figure 4.

Amplltudes of componenis of mean displacement versus {ime for run KR,
with €' = 8' = 0. The slow exponential growth reflecis the separation
of intrinsically sfochostic orbits In the equilibrium fleid.
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Snapshots of trocer particles for run KRAA. (o) Timestep 0. (b)
Timnestep 1000.

- - -



Figure 6.

Meon amplitudes of radial, azimuthal, ond oxlol componenis of particle
displacements versus time for run KRAA (I = 1).
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Figure 14.

First order total current versus r-z position for i =1,
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Mean amp!itudes versus time for run KRBA (I = 2).
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Mean phases versus time for run KRBA ({ = 2).
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Figure 18.

ring porticles at end of { = 2 "rodic! mode” run

Mean displacements of
versus r-2 position.
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Figure 19.

First order magnetic fleld versus r-z position for { = 2 "radial mode”

run.
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Snopshot of tracer poriicles for { = 2 "axial mode” run, ot the end of
the run (see text).
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Figure 21.

Mean displacements of ring particies at end of { = 2 "exlal mode" run

versus r-z positlion.
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Figure 22,

Meon displacements of ring particles ot end of { = 2 "oxlol mode”

versus r and versus .

run
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Figure 23.

Mean omp!itudes versus fime for run KRIA (! = 3).
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Figure 24.

Mean phases versus time for run KRIA ({ = 3).
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Figure 25,

Mean displacementis of ring porticles of end of { =3 run versus r-z

position.
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' Figure 26.

Meon omplitudes versus time for run KREA (I = 4).
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Figure 27.

Mean phases versus time for run KREA (I = 4).



0|
<e, >l
162! . -
I<¢, >l W‘WW
KKe, >l
° T %000

Figure 28.

Mean omplitudes versus fime for run KRFA (§ = 4, first order Eulerian
tields set to zero to illustrate orbit separation In the equitibrium
tield).
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Figure 29,

Vean amplitudes versus time for run KRGA ({ = 5).
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Figure 30,

Meaon phases versus time for run KRGA (l = S).



Figure 31,

Mean amplitudes versus time for run KRDA/B ({ = 1, denser plasma
beckground).
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Figure 32.

Meon phoses versus time for run KRDA/B (l = 1, denser plosma
beckground).



